已知函数 f ( x ) = x 2 + x - 1 , α 、 β 是方程 f ( x ) = 0 的两个根( α > β ), f ` ( x ) 是 f ( x ) 的导数,设 a 1 = 1 , a n + 1 = a n - f ( a n ) f ` ( a n ) ( n = 1 , 2 , . . . ) (n=1,2,…),
(Ⅰ)求 α 、 β 的值;
(Ⅱ)已知对任意的正整数 n 有 a n > α ,记 b n = ln a n - β a n - α ( n = 1 , 2 , . . . ) ,求数列 { b n } 的前 n 项和 S n .
已知数列的前项和,求证:是等比数列,并求出通项公式.
求不等式的解集.
数列的前n项和为, (I)证明:数列是等比数列; (Ⅱ)若,数列的前n项和为,求不超过的最大整数的值.
已知函数. (Ⅰ)当时,恒成立,求实数的取值范围; (Ⅱ)若对一切,恒成立,求实数的取值范围.
如图所示,是一个矩形花坛,其中AB= 4米,AD = 3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点, 且矩形的面积小于64平方米. (Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域; (Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.