小亮和小明进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).A点坐标为 ,A点所表示的实际意义是 ;求出AB所在直线的函数关系式;如果小明上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
计算:(-2)-(-5)+(-9)-(-7)
计算:(-34)+(+8)+(+5)+(-23)
如图,直线分别交轴,轴于两点,以为边作矩形,为的中点.以,为斜边端点作等腰直角三角形,点在第一象限,设矩形与重叠部分的面积为.(1)求点的坐标;(2)当值由小到大变化时,求与的函数关系式;(3)若在直线上存在点,使等于,求出的取值范围;(4)在值的变化过程中,若为等腰三角形,请直接写出所有符合条件的值.
已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
已知:如图,正比例函数的图象与反比例函数的图象交于点(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?(3)是反比例函数图象上的一动点,其中过点作直线 轴,交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.