如图,AB是⊙O的直径,C是BA延长线上一点,CD切⊙O于点D,弦DE∥CB,Q是AB上动点,CA=1,CD是⊙O半径的倍求⊙O的半径R.当点Q从点A向点B运动的过程中,图中阴影部分的面积是否发生变化,若发生变化,请你说明理由;若不发生变化,请你求出阴影部分的面积.
有一枚均匀的正四面体,四个面上分别标有数字l,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字一2,一l,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出的值.用树状图或列表法表示出S的所有可能情况;分别求出当S=0和S<2时的概率.
如图,在所给的网格图(每小格边长均为1的正方形)中,完成下列各题:将△ABC向右平移4个单位得到△A1B1C1;以直线为对称轴作△ABC的轴对称图形△;△可以看作是由△A1B1C1先向左平移4个单位,再以直线为对称轴作轴对称变换得到的。除此以外,△还可以看作是由△A1B1C1经怎样变换得到的?请选择一种方法,写出图形变换的步骤。
如图所示,已知在直角梯形中,轴于点.动点从点出发,沿轴正方向以每秒1个单位长度的速度移动.过点作垂直于直线,垂足为.设点移动的时间为秒(),与直角梯形重叠部分的面积为.求经过三点的抛物线解析式;将绕着点顺时针旋转,是否存在,使得的顶点或在抛物线上?若存在,直接写出的值;若不存在,请说明理由.求与的函数关系式.
如图,在直角坐标系中,是原点,三点的坐标分别,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.求直线的解析式.设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.设从出发起,运动了秒.当,两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.求证:∠DAF=∠CDE问△ADF与△DEC相似吗?为什么?若AB=4,AD=3,AE=3,求AF的长.