经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足(元).(Ⅰ)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(Ⅱ)求该种商品的日销售额y的最大值与最小值.
向量满足,. (1)求关于k的解析式; (2)请你分别探讨⊥和∥的可能性,若不可能,请说明理由,若可能,求出k的值; 求与夹角的最大值.
函数是定义在上的奇函数,且. (1)求实数的值.(2)用定义证明在上是增函数; (3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值(无需说明理由)
已知函数,且函数的图象相邻两条对称轴之间的距离为 (Ⅰ)求的值;(Ⅱ)若函数在区间上单调递增,求k的取值范围.
某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:
(1)、写出价格关于时间的函数关系式(表示投放市场的第天) (2)、销售量与时间的函数关系为:,则该产品投放市场第几天销售额最高?最高为多少千元?
已知向量与互相垂直,其中 (1)求和的值 (2)若,,求的值