如图,在三棱柱中,侧面,为棱上异于的一点,,已知,求:(Ⅰ)异面直线与的距离;(Ⅱ)二面角的平面角的正切值.
平面内与两定点、()连线的斜率之积等于非零常数m的点的轨迹,加上、两点所成的曲线C可以是圆、椭圆或双曲线.求曲线C的方程,并讨论C的形状与m值得关系.
已知;,若是的必 要非充分条件,求实数的取值范围.
已知常数,向量,经过定点以为方向向量的直线与经过定点以为方向向量的直线相交于,其中, (1)求点的轨迹的方程;(2)若,过的直线交曲线于两点,求的取值范围。
以椭圆的一个顶点为直角顶点作此椭圆的内接等腰直角三角形,试问:(1)这样的等腰直角三角形是否存在?若存在,写出一个等腰直角三角形两腰所在的直线方程。若不存在,说明理由。(2)这样的等腰直角三角形若存在,最多有几个?
在个同样型号的产品中,有个是正品,个是次品,从中任取个,求(1)其中所含次品数的期望、方差;(2)事件“含有次品”的概率。