设函数是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,(a∈R).(1)当x∈(0,1]时,求的解析式;(2)若a>-1,试判断在(0,1)上的单调性,并证明你的结论;(3)是否存在a,使得当x∈(0,1)时,f(x)有最大值-6.
(本小题满分12分)四棱锥A-BCDE的正视图和俯视图如下,其中正视图是等边三角形,俯视图是直角梯形.(I)若F为AC的中点,当点M在棱AD上移动时,是否总有BF丄CM,请说明理由.(II)求三棱锥C_ADE的高.
(本小题满分12分)如图,已知ΔABC中,,AD=2DC,求ΔABC的面积.
已知,函数(1)求的极小值;(2)若在上为单调增函数,求的取值范围;(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围.
设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且(1)若过三点的圆恰好与直线相切,求椭圆C的方程;(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
设数列的前项和为,且满足(1)求数列的通项公式;(2)在数列的每两项之间都按照如下规则插入一些数后,构成新数列,在两项之间插入个数,使这个数构成等差数列,求的值;(3)对于(2)中的数列,若,并求(用表示).