平面直角坐标系中,为坐标原点,给定两点A(1,0)、B(0,-2),点C满足其中、且.(Ⅰ)求点C的轨迹方程;(Ⅱ)设点C的轨迹与双曲线交于两点M、N,且以MN为直径的圆过原点,求证:为定值.
(本小题满分12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1, 点D是BC的中点,点E在AC上,且DE⊥A1E . (1)证明:平面A1DE⊥平面ACC1A1; (2)求直线AD和平面A1DE所成角的正弦值。
(本小题满分12分)已知f(x)=奇函数,且。 (1)求实数p , q的值。 (2)判断函数f(x)在上的单调性,并证明。
(本小题满分12分)已知集合,,如果,则这样的实数x是否存在?若存在,求出x;若不存在,说明理由。
已知数列满足,. (1)计算; (2)求数列的通项公式; (3)已知,设是数列的前项积,若对恒成立,求实数m的范围。
如图,已知, 四边形是梯形,∥, ,, 中点。 (1)求证:∥平面; (2)求异面直线与所成角的余弦值。