某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为 a n 万元. (Ⅰ)用d表示 a 1 , a 2 ,并写出 a n + 1 与 a n 的关系式; (Ⅱ)若公司希望经过 m ( m ≥ 3 ) )年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).
2013年11月,青岛发生输油管道爆炸事故造成胶州湾局部污染.国家海洋局用分层抽样的方法从国家环保专家、海洋生物专家、油气专家三类专家库中抽取若干人组成研究小组赴泄油海域工作,有关数据见表1(单位:人) 海洋生物专家为了检测该地受污染后对海洋动物身体健康的影响,随机选取了只海豚进行了检测,并将有关数据整理为不完整的列联表,如表2. (1)求研究小组的总人数; (2)写出表2中、、、、的值,并判断有多大的把握认为海豚身体不健康与受到污染有关; (3)若从研究小组的环保专家和海洋生物专家中随机选人撰写研究报告,求其中恰好有人为环保专家的概率. 附:①,其中. ②
某广告公司设计一个凸八边形的商标,它的中间是一个正方形,外面是四个腰长为,顶角为的等腰三角形. (1)若角时,求该八边形的面积; (2)写出的取值范围,当取何值时该八边形的面积最大,并求出最大面积.
已知函数,. (1)已知区间是不等式的解集的子集,求的取值范围; (2)已知函数,在函数图像上任取两点、,若存在使得恒成立,求的最大值.
已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点、构成的三角形中面积的最大值为. (1)求椭圆的标准方程; (2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时、不重合,连接与椭圆的另一交点记为,求的取值范围.
甲、乙两容器中分别盛有两种浓度的某种溶液,从甲容器中取出溶液,将其倒入乙容器中搅匀,再从乙容器中取出溶液,将其倒入甲容器中搅匀,这称为是一次调和,已知第一次调和后,甲、乙两种溶液的浓度分别记为:,,第次调和后的甲、乙两种溶液的浓度分别记为:、. (1)请用、分别表示和; (2)问经过多少次调和后,甲乙两容器中溶液的浓度之差小于.