某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为 a n 万元. (Ⅰ)用d表示 a 1 , a 2 ,并写出 a n + 1 与 a n 的关系式; (Ⅱ)若公司希望经过 m ( m ≥ 3 ) )年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).
如图,直三棱柱 A B C - A 1 B 1 C 1 中, A C = B C , A A 1 = A B , D 为 B B 1 的中点, E 为 A B 1 上的一点, A E = 3 E B 1 .
(Ⅰ)证明: D E 为异面直线 A B 1 与 C D 的公垂线; (Ⅱ)设异面直线 A B 1 与 C D 的夹角为45°,求二面角 A 1 - A C 1 - B 1 的大小.
已知数列 { a n } 的前 n 项和 S n = ( n 2 + n ) 3 n . (Ⅰ)求 l i m S → ∞ a n S n ; (Ⅱ)证明: a 1 1 2 + a 2 2 2 + . . . + a n n 2 > 3 n .
△ABC 中, D 为边 BC 上的一点, BD=33 , sinB= 5 13 , cos∠ADC= 3 5 ,求 AD .
已知斜率为1的直线 l 与双曲线 C : x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 相交于 B 、 D 两点,且 B D 的中点为 M ( 1 , 3 ) e = 2
(Ⅰ)求 C 的离心率;
(Ⅱ)设 C 的右顶点为 A ,右焦点为 F , | D F | · | B F | = 17 .证明:过 A 、 B 、 D 三点的圆与x轴相切。
已知函数 f ( x ) = x 3 - 3 a x 2 + 3 x + 1 .
(Ⅰ)设 a = 2 ,求 f ( x ) 的单调期间; (Ⅱ)设 f ( x ) 在区间 ( 2 , 3 ) 中至少有一个极值点,求 a 的取值范围.