在直角坐标系 x O y 中,曲线 C 1 的点均在 C 2 : x - 5 2 + y 2 = 9 外,且对 C 1 上任意一点 M , M 到直线 x = - 2 的距离等于该点与圆 C 2 上点的距离的最小值. (Ⅰ)求曲线 C 1 的方程; (Ⅱ)设 P x 0 , y 0 y 0 ≠ ± 3 为圆 C 2 外一点,过 P 作圆 C 2 的两条切线,分别与曲线 C 1 相交于点 A , B 和 C , D .
证明:当 P 在直线 x = - 4 上运动时,四点 A , B , C , D 的纵坐标之积为定值.
某电信部门执行的新的电话收费标准中,其中本地网营业区内的通话费标准:前3分钟为0.20元(不足3分钟按3分钟计算),以后的每分钟收0.10元(不足1分钟按1分钟计算。)在一次实习作业中,某同学调查了A、B、C、D、E五人某天拨打的本地网营业区内的电话通话时间情况,其原始数据如下表所示:
⑴在上表中填写出各人应缴的话费; ⑵设通话时间为t分钟,试根据上表完成下表的填写(即这五人在这一天内的通话情况统计表):
⑶若该本地网营业区原来执行的电话收费标准是:每3分钟为0.20元(不足3分钟按3分钟计算)。问这五人这天的实际平均通话费与原通话标准下算出的平均通话费相比,是增多了还是减少了?增或减了多少?
设等比数列的首项,前n项和为,且成等差数列. (Ⅰ)求的公比; (Ⅱ)用表示的前项之积,即,试比较、、的大小.
某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5-8千美元的地区销售该公司A饮料的情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减。 (Ⅰ)下列几个模拟函数中(x表示人均GDP,单位:千美元,y表示年人均A饮料的销量,单位;升),用哪个来描述人均A饮料销量与地区的人均GDP的关系更合适?说明理由。 ①,②,③,④ (Ⅱ)若人均GDP为1千美元时,年人均A饮料的销量为2升;若人均GDP为4千美元时,年人均A饮料的销量为5升,把(Ⅰ)中你所选的模拟函数求出来,并求在各个地区中,年人均A饮料的销量最多是多少? (Ⅲ)因为A饮料在B国被检测出杀虫剂的含量超标,受此事件的影响,A饮料在人均GDP低于3千美元和高于6千美元的地区销量下降5%,其它地区的销量下降10%,根据(Ⅱ)所求出的模拟函数,求在各个地区中,年人均A饮料的销量最多为多少?
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,G是CC1上的动点。 (Ⅰ)求证:平面ADG⊥平面CDD1C1 (Ⅱ)判断B1C1与平面ADG的位置关系,并给出证明; (Ⅲ)若G是CC1的中点,求二面角G-AD-C的大小。
在△中,已知a、b、c分别是三内角、、所对应的边长,且 (Ⅰ)求角的大小; (Ⅱ)若,试判断△ABC的形状并求角的大小.