一个盒子装有6张卡片,上面分别写着如下6个定义域为R的函数:,, ,,, 现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得函数是奇函数的概率.
求以椭圆的焦点为焦点,且过点的双曲线的标准方程.
已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程; (2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.
抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点. (1)若点为中点,求直线的方程; (2)设抛物线的焦点为,当时,求的面积.
已知四棱锥,面,∥,,,,,为上一点,是平面与的交点. (1)求证:∥; (2)求证:面; (3)求与面所成角的正弦值.
在数列中,. (1)求; (2)设,求证:为等比数列; (3)求的前项积.