(本小题满分13分)已知函数,其中a为常数,且.(Ⅰ)若,求函数的极值点;(Ⅱ)若函数在区间上单调递减,求实数a的取值范围.
已知函数.(1)求的单调递减区间;(2)若在区间上的最大值为,求它在该区间上的最小值.
已知顶点在原点,焦点在轴上的抛物线过点.(1)求抛物线的标准方程;(2)若抛物线与直线交于、两点,求证:.
已知命题:任意,,命题:函数在上单调递减.(1)若命题为真命题,求实数的取值范围;(2)若和均为真命题,求实数的取值范围.
已知抛物线与椭圆有公共焦点,且椭圆过点.(1)求椭圆方程;(2)点、是椭圆的上下顶点,点为右顶点,记过点、、的圆为⊙,过点作⊙ 的切线,求直线的方程;(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点、,试问直线是否经过定点,若是,求出定点坐标;若不是,说明理由.
在长方体中,为线段中点.(1)求直线与直线所成的角的余弦值;(2)若,求二面角的大小;(3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.