(本小题满分13分)为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.(Ⅰ)求4人恰好选择了同一家公园的概率;(Ⅱ)设选择甲公园的志愿者的人数为,试求的分布列及期望.
(本小题满分12分) 设函数 (1)若对于恒成立,求实数的取值范围; (2)若对于恒成立,求实数的取值范围。
(本小题满分12分) 斜三棱柱中,侧面底面ABC,侧面是菱形,,,,E、F分别是,AB的中点. (1)求证:EF∥平面; (2)求证:CE⊥面ABC. (3)求四棱锥的体积.
(本小题满分12分)设函数,, (1)若,求取值范围; (2)求的最值,并给出最值时对应的x的值。
(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF∥平面PCD; (2)平面BEF⊥平面PAD
(本小题满分12分)已知两直线l1:x+my+6=0 l2:(m-2)x+3my+2m=0 当m为何值时,l1与l2: (1)平行;(2)垂直;