某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示(在答题卡上).(Ⅰ)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;(Ⅱ)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(Ⅲ)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?
设是函数的图象上两点,且,已知点的横坐标为。 (1)求证:点的纵坐标是定值; (2)定义,其中且, ①求的值; ②设时,,若对于任意,不等式恒成立,试求实数的取值。
已知函数。 (1)若,求函数在上的最小值; (2)若函数在上存在单调递增区间,试求实数的取值范围。
已知,命题:对任意,不等式恒成立;命题:存在,使不等式成立. (1)若为真命题,求的取值范围; (2)若为假,为真,求的取值范围。
已知数列的相邻两项、是关于的方程的两根,且。 (1)求证:数列是等比数列; (2)求数列的前项的和及数列的通项公式。
已知向量,记。 (1)若,求的值; (2)中,角、、的对边分别为、、,且满足,,,试求的面积。