某校把一块沿河的三角形废地(如图)开辟为生物园,已知∠ACB=90°,∠CAB=54°,BC=60米.现学校准备从点C处向河岸AB修一条小路CD,使得CD将生物园分割成面积相等的两部分.请你用直尺和圆规在图中作出小路CD(保留作图痕迹);为便于浇灌,学校在点C处建了一个蓄水池,利用管道从河中取水.已知每铺设1米管道费用为50元,求铺设管道的最低费用.(sin36°≈0.588,cos36°≈0.809,tan36°≈0.727,精确到1元)
已知抛物线 y=2 x 2 -4x+c 与 x 轴有两个不同的交点.
(1)求 c 的取值范围;
(2)若抛物线 y=2 x 2 -4x+c 经过点 A(2,m) 和点 B(3,n) ,试比较 m 与 n 的大小,并说明理由.
化简: ( a + b ) 2 -b(2a+b) .
计算: ( - 2 ) 3 + 1 2 ×8 .
如图,已知锐角三角形 ABC 内接于圆 O , OD⊥BC 于点 D ,连接 OA .
(1)若 ∠BAC=60° ,
①求证: OD= 1 2 OA .
②当 OA=1 时,求 ΔABC 面积的最大值.
(2)点 E 在线段 OA 上, OE=OD ,连接 DE ,设 ∠ABC=m∠OED , ∠ACB=n∠OED(m , n 是正数),若 ∠ABC<∠ACB ,求证: m-n+2=0 .
设二次函数 y=(x- x 1 )(x- x 2 )( x 1 , x 2 是实数).
(1)甲求得当 x=0 时, y=0 ;当 x=1 时, y=0 ;乙求得当 x= 1 2 时, y=- 1 2 .若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.
(2)写出二次函数图象的对称轴,并求该函数的最小值(用含 x 1 , x 2 的代数式表示).
(3)已知二次函数的图象经过 (0,m) 和 (1,n) 两点 (m , n 是实数),当 0< x 1 < x 2 <1 时,求证: 0<mn< 1 16 .