如图9,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.填空:∠ABC=___________,BC=___________;请你在图中找出一点D,再连接DE、DF,使以D、E、F为顶点的三角形与△ABC全等.(画出一个三角形即可)
如图,在矩形ABCD的对角线AC上有一动点O,以OA为半径作⊙O交AD、AC于点E、F,连结CE.(1)若CE恰为⊙O的切线,求证:∠ACB=∠DCE;(2)在(1)的条件下,若AB=,BC=2,求⊙O的半径.
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB. (1)求证:AD⊥DC; (2)若AD=2,AC=,求AB的长.
已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于O,连结AP、OP、OA.(1)求证:△OCP∽△PDA;(2)若△OCP与△PDA的面积比为1:4,求边AB的长;
如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.
一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同。将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球。求第二次取出球的号码比第一次的大的概率。(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)