如图1,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a>0)的图像顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=.求这个二次函数的解析式;若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;Com]如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.
如图1, RtΔABC 中, ∠ACB=90° ,点 D 为边 AC 上一点, DE⊥AB 于点 E .点 M 为 BD 中点, CM 的延长线交 AB 于点 F .
(1)求证: CM=EM ;
(2)若 ∠BAC=50° ,求 ∠EMF 的大小;
(3)如图2,若 ΔDAE≅ΔCEM ,点 N 为 CM 的中点,求证: AN//EM .
小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;
②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加 x 盆,第二期盆景与花卉售完后的利润分别为 W 1 , W 2 (单位:元).
(1)用含 x 的代数式分别表示 W 1 , W 2 ;
(2)当 x 取何值时,第二期培植的盆景与花卉售完后获得的总利润 W 最大,最大总利润是多少?
“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:
(1)本次比赛参赛选手共有 人,扇形统计图中“ 69.5~79.5 ”这一组人数占总参赛人数的百分比为 ;
(2)赛前规定,成绩由高到低前 60% 的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;
(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
如图, ⊙O 为锐角 ΔABC 的外接圆,半径为5.
(1)用尺规作图作出 ∠BAC 的平分线,并标出它与劣弧 BC ̂ 的交点 E (保留作图痕迹,不写作法);
(2)若(1)中的点 E 到弦 BC 的距离为3,求弦 CE 的长.
为了测量竖直旗杆 AB 的高度,某综合实践小组在地面 D 处竖直放置标杆 CD ,并在地面上水平放置一个平面镜 E ,使得 B , E , D 在同一水平线上,如图所示.该小组在标杆的 F 处通过平面镜 E 恰好观测到旗杆顶 A (此时 ∠AEB=∠FED) ,在 F 处测得旗杆顶 A 的仰角为 39.3° ,平面镜 E 的俯角为 45° , FD=1.8 米,问旗杆 AB 的高度约为多少米?(结果保留整数)(参考数据: tan39.3°≈0.82 , tan84.3°≈10.02)