如图1,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a>0)的图像顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=.求这个二次函数的解析式;若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;Com]如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.
为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为 A 、 B 、 C 、 D 四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:
(1)求样本容量;
(2)补全条形图,并填空: n = ;
(3)若全市有5000人参加了本次测试,估计本次测试成绩为 A 级的人数为多少?
如图,在平面直角坐标系中,抛物线 y = a x 2 + 2 x + c 与 x 轴交于 A ( − 1 , 0 ) , B ( 3 , 0 ) 两点,与 y 轴交于点 C ,点 D 是该抛物线的顶点.
(1)求抛物线的解析式和直线 AC 的解析式;
(2)请在 y 轴上找一点 M ,使 ΔBDM 的周长最小,求出点 M 的坐标;
(3)试探究:在拋物线上是否存在点 P ,使以点 A , P , C 为顶点, AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点 P 的坐标;若不存在,请说明理由.
已知:如图,在四边形 ABCD 中, AD / / BC ,点 E 为 CD 边上一点, AE 与 BE 分别为 ∠ DAB 和 ∠ CBA 的平分线.
(1)请你添加一个适当的条件 ,使得四边形 ABCD 是平行四边形,并证明你的结论;
(2)作线段 AB 的垂直平分线交 AB 于点 O ,并以 AB 为直径作 ⊙ O (要求:尺规作图,保留作图痕迹,不写作法);
(3)在(2)的条件下, ⊙ O 交边 AD 于点 F ,连接 BF ,交 AE 于点 G ,若 AE = 4 , sin ∠ AGF = 4 5 ,求 ⊙ O 的半径.
已知:如图, AB 是 ⊙ O 的直径, AB = 4 ,点 F , C 是 ⊙ O 上两点,连接 AC , AF , OC ,弦 AC 平分 ∠ FAB , ∠ BOC = 60 ° ,过点 C 作 CD ⊥ AF 交 AF 的延长线于点 D ,垂足为点 D .
(1)求扇形 OBC 的面积(结果保留 π ) ;
(2)求证: CD 是 ⊙ O 的切线.
为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
(1)学校这次调查共抽取了 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为 ;
(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?