每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB(假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位)
为了测量旗杆AB的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同学画出了示意图2,并把测量结果记录如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α. (1)请你帮助甲同学计算旗杆AB的高度(用含a、b、c的式子表示); (2)请你帮助乙同学计算旗杆AB的高度(用含m、n、α的式子表示).
如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D 在同一条直线上.求证:BD=CE.
(1)计算; (2)先化简,再求值:,其中.
如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒. (1)填空:当t=1时,⊙P的半径为,OA=,OB=; (2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形. ①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示) ②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC的形状,并说明理由.
将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E. (1)当m=3时,点B的坐标为,点E的坐标为 ; (2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由. (3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.