每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB(假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位)
如图,抛物线 y = a x 2 + bx + c 的图象与 x 轴交于 A ( − 1 . 0 ) , B ( 3 , 0 ) 两点,与 y 轴交于点 C ( 0 , − 3 ) ,顶点为 D .
(1)求此抛物线的解析式.
(2)求此抛物线顶点 D 的坐标和对称轴.
(3)探究对称轴上是否存在一点 P ,使得以点 P 、 D 、 A 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的 P 点的坐标,若不存在,请说明理由.
如图,在 ⊙ O 中, AB 为直径, D 、 E 为圆上两点, C 为圆外一点,且 ∠ E + ∠ C = 90 ° .
(1)求证: BC 为 ⊙ O 的切线.
(2)若 sin A = 3 5 , BC = 6 ,求 ⊙ O 的半径.
为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题
(1)本次抽样调查共抽取多少名学生?
(2)补全条形统计图.
(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.
(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?
(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).
据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过 15 m / s ,在一条笔直公路 BD 的上方 A 处有一探测仪,如平面几何图, AD = 24 m , ∠ D = 90 ° ,第一次探测到一辆轿车从 B 点匀速向 D 点行驶,测得 ∠ ABD = 31 ° ,2秒后到达 C 点,测得 ∠ ACD = 50 ° ( tan 31 ° ≈ 0 . 6 , tan 50 ° ≈ 1 . 2 ,结果精确到 1 m )
(1)求 B , C 的距离.
(2)通过计算,判断此轿车是否超速.
在 ΔABC 中, BC = a , AC = b , AB = c ,若 ∠ C = 90 ° ,如图1,则有 a 2 + b 2 = c 2 ;若 ΔABC 为锐角三角形时,小明猜想: a 2 + b 2 > c 2 ,理由如下:如图2,过点 A 作 AD ⊥ CB 于点 D ,设 CD = x .在 Rt Δ ADC 中, A D 2 = b 2 − x 2 ,在 Rt Δ ADB 中, A D 2 = c 2 − ( a − x ) 2
∴ a 2 + b 2 = c 2 + 2 ax
∵ a > 0 , x > 0
∴ 2 ax > 0
∴ a 2 + b 2 > c 2
∴ 当 ΔABC 为锐角三角形时, a 2 + b 2 > c 2
所以小明的猜想是正确的.
(1)请你猜想,当 ΔABC 为钝角三角形时, a 2 + b 2 与 c 2 的大小关系.
(2)温馨提示:在图3中,作 BC 边上的高.
(3)证明你猜想的结论是否正确.