如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点,且.(Ⅰ)求证:CN∥平面AMB1;(Ⅱ)求证: B1M⊥平面AMG.
(本小题满分16分)已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.设f (x)=x2+ax,g(x)=x+b(R),=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.(1)设,若h (x)为偶函数,求;(2)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;
(本小题满分15分)如图,某市拟在道路AE的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数(),的图象,且图象的最高点为;赛道的中间部分为千米的水平跑道;赛道的后一部分为以O为圆心的一段圆弧.(1)求的值和角的值;(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记,求当“矩形草坪”的面积最大时的值.
(本小题满分15分)已知函数,.(1)求的值;(2)证明;(3)若, ,求的值.
(本小题满分14分)已知命题:方程有两个不相等的负实数根;命题:函数无零点.(1)若为真命题,求实数的取值范围;(2)若或为真,且为假,求实数的值的集合.
本小题满分14分)已知.(1)求的值;(2)求的值.