如图,在某海域内有三个港口P、M、N.港口M在港口P的南偏东60°的方向上,港口N在港口M的正西方向上,P、M两港口相距20海里,P、N两港口相距海里.求:港口N在港口P的什么方向上?请说明理由M、N两港口的距离(结果保留根号).
如图,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点A开始沿AO以cm/s的速度向点O移动,移动时间为t s(0<t<6).(1)求∠OAB的度数. (2分)(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时, PM与⊙O‘相切?(3分)(3)动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动. 如果P、Q、R分别从A、A、B同时移动,当t="4" s时,试说明四边形BRPQ为菱形;(3分)(4)在(3)的条件下,以R为圆心,r为半径作⊙R,当r不断变化时,⊙R与菱形BRPQ各边的交点个数将发生变化,随当交点个数发生变化时,请直接写出r的对应值或取值范围.(4分)
甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线、线段分别表示甲、乙两车所行路程(千米)与时间(小时)之间的函数关系对应的图象(线段表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程与时间的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,甲、乙两车相距80千米?(写出解题过程)
李明投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.⑴设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?⑵如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?⑶根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
已知: 如图, AB是⊙O的直径,⊙O过AC的中点D, DE切⊙O于点D, 交BC于点E. (1)求证: DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.
如图,放置在水平桌面上的台灯的灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD="60°." 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)