已知是一个等差数列,且(1)求的通项.(2)求前n项和Sn, 以及Sn的最大值.
如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.(1)求证:;(2)求直线与平面所成角的正弦值;
是双曲线 上一点,、分别是双曲线的左、右顶点,直线,的斜率之积为.(1)求双曲线的离心率;(2)过双曲线的右焦点且斜率为1的直线交双曲线于,两点,为坐标原点,为双曲线上一点,满足,求的值.
设各项均为正数的等比数列中,,.设.(1)求数列的通项公式; (2)若,,求证:;
在中,的对边分别为,且. (1)求的值;(2)若,,求和.
已知:在函数的图象上,以为切点的切线的倾斜角为.(Ⅰ)求,的值;(Ⅱ)是否存在最小的正整数,使得不等式对于恒成立?如果存在,请求出最小的正整数;如果不存在,请说明理由;(Ⅲ)求证:(,).