如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB (Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
已知函数f(x)=x2+lnx. (1)求函数f(x)的单调区间; (2)求证:当x>1时,x2+lnx<x3.
若展开式中第二、三、四项的二项式系数成等差数列. (1)求n的值; (2)此展开式中是否有常数项,为什么?
有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法? (1)甲不在中间也不在两端; (2)甲、乙两人必须排在两端; (3)男、女生分别排在一起; (4)男女相间; (5)甲、乙、丙三人从左到右顺序保持一定.
已知函数,,其中。 (1)若是函数的极值点,求实数的值。 (2)若对任意的,(为自然对数的底数)都有成立,求实数的取值范围。
已知椭圆的离心率为,并且直线是抛物线的一条切线。 (1)求椭圆的方程 (2)过点的动直线交椭圆于、两点,试问:在直角坐标平面上是否存在一个定点,使得以为直径的圆恒过点?若存在求出的坐标;若不存在,说明理由。