如图,货轮在海上以50海里/时的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为155o的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为125o.半小时后,货轮到达C点处,观测到灯塔A的方位角为80o.求此时货轮与灯塔之间的距离(得数保留最简根号).
设命题:实数满足,其中;命题:实数满足. (1)若,且为真,求实数的取值范围; (2)若是成立的必要不充分条件,求实数的取值范围.
已知,,点的坐标为. (1)求当时,点满足的概率; (2)求当时,点满足的概率.
某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人. (1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名? (2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.
已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点. (1)证明和均为定值; (2)设线段的中点为,求的最大值; (3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.
如图,已知正方体棱长为2,、、分别是、和的中点. (1)证明:面; (2)求二面角的余弦值.