某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求,的值;(Ⅲ)求数学期望ξ.
已知函数. (1)求函数f (x)的最小正周期; (2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足,求f(B)的取值范围.
已知数列的各项均为正数,记,,. (1)若,且对任意,三个数组成等差数列,求数列的通项公式. (2)证明:数列是公比为的等比数列的充分必要条件是:对任意,三个数组成公比为的等比数列.
已知椭圆的左右焦点分别为,点为短轴的一个端点,. (1)求椭圆的方程; (2)如图,过右焦点,且斜率为的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为. 求证: 为定值.
已知函数,. (1)求的单调区间; (2)当时,若对于任意的,都有成立,求的取值范围.
已知正四棱柱中,. (1)求证:; (2)求二面角的余弦值; (3)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,请说明理由.