用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点.观察图中每一个正方形(实线)四条边上的格点的个数,请回答下列问题:由里向外第1个正方形(实线)四条边上的格点个数共有 个;由里向外第2个正方形(实线)四条边上的格点个数共有 个;由里向外第3个正方形(实线)四条边上的格点个数共有 个;由里向外第10个正方形(实线)四条边上的格点个数共有 个;由里向外第n个正方形(实线)四条边上的格点个数共有 个.
如图:三角形ABC内接于圆O,∠BAC与∠ABC的角平分线AE,BE相交于点E,延长AE交外接圆O于点D,连接BD,DC,且∠BCA=60° (1)求∠BED的大小; (2)证明:△BED为等边三角形; (3)若∠ADC=30°,圆O的半径为r,求等边三角形BED的边长.
某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件 (1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大; (3)商场的营销部结合上述情况,提出了A、B两种营销方案: 方案A:该文具的销售单价高于进价且不超过30元; 方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.
如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字,现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y). (1)请用列表或画树状图的方法写出所有可能得到的点P的坐标; (2)李刚为甲、乙两人设计了一个游戏:记s=x+y.当s<6时,甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利? (3)请你利用两个转盘,设计一个公平的游戏规则.
如图,在平面直角坐标系xOy中,抛物线C1:y=a(x-)2+h分别与x轴、y轴交于点A(1,0)和点B(0,-2),将线段AB绕点A逆时针旋转90°至AP. (1)求点P的坐标及抛物线C1的解析式; (2)将抛物线C1先向左平移2个单位,再向上平移1个单位得到抛物线C2,请你判断点P是否在抛物线C2上,并说明理由.
如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD. (1)弦AB= (结果保留根号); (2)当∠D=20°时,求∠BOD的度数.