已知数列中,是的前项和,且是与的等差中项,其中是不等于零的常数.(1)求; (2)猜想的表达式,并用数学归纳法加以证明.
(本题满分12分)已知函数f(x)=lnx-ax(a∈R)。(1)若函数f(x)单调递增,求实数a的取值范围;(2)当a>0时,求函数f(x)在[1,2]上的最小值。
.(本题满分12分) 如图,四棱锥的底面是正方形,侧面是等腰三角形且垂直于底面,,,、分别是、的中点。(1)求证:;(2)求二面角的大小。
(本题满分12分)设p:实数x满足,其中,命题实数满足. (Ⅰ)若且为真,求实数的取值范围;(Ⅱ)若是的充分不必要条件,求实数的取值范围.
(本题满分10分) 如图,要计算西湖岸边两景点与的距离,由于地形的限制,需要在岸上选取和两点,现测得,,, ,,求两景点与的距离(精确到0.1km).参考数据:
(本小题满分12分)已知椭圆C:(a>b>0)的离心率为短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程; (Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.