某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走①号公路堵车的概率为,不堵车的概率为;汽车走②号公路堵车的概率为,不堵车的概率为.由于客观原因甲、乙两辆汽车走①号公路,丙汽车走②号公路,且三辆车是否堵车相互之间没有影响.(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求汽车走公路②堵车的概率;(Ⅱ)在(Ⅰ)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.
(本小题满分12分)已知与圆C:相切的直线交x轴、y轴于A、B两点,O为坐标原点,且|OA|=,。 (I)求直线与圆C相切的条件; (II)在(1)的条件下,求线段AB的中点轨迹方程; (Ⅲ)在(1)的条件下,求面积的最小值。
(本小题满分12分)在二项式的展开式中,若第5项,第6项与第7项的二项式系数成等差数列, (Ⅰ)求展开式中二项式系数最大的项; (Ⅱ)若前三项的二项式系数和等于79,求展开式中系数最大的项是第几项?
(本小题共14分)设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A,B两点。 (Ⅰ)求椭圆M的方程; (Ⅱ)求证| AB | =; (Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C, D,求四边形ABCD面积的最小值。
(本小题满分12分) 已知一个圆截y轴所得的弦长为2,被x轴分成的两段弧长的比为3:1. (1)设圆心,求实数、满足的关系式; (2)当圆心到直线的距离最小时,求圆的方程.
如图,在四棱锥中,底面为菱形,, , ,为的中点,为的中点 (1)证明:直线; (2)求异面直线与所成角的大小; (3)求点到平面的距离.