如图,一次函数y1=ax+2与反比例函数y2=的图象交于点A(4,m)和B(-8,-2),与y轴交于点C,与x轴交于点D.(1)求a、k的值;(2)过点A作AE⊥x轴于点E,若P为反比例函数图象的位于第一象限部分上的一点,且直线OP分△ADE所得的两部分面积之比为2∶7.请求出所有符合条件的点P的坐标;(3)在(2)的条件下,请在x轴上找一点Q,使得△PQC的周长最小,并求出点Q的坐标.
(1)计算: (2)化简:,请取一个合适的x的值再求上述代数式的值.
如图,抛物线(>0)与y轴交于点C,与x轴交于A 、B两点,点A在点B的左侧,且 (1)求此抛物线的解析式; (2)如果点D是线段AC下方抛物线上的动点,设D点的横坐标为x,△ACD的面积为S,求S与x的关系式,并求当S最大时点D的坐标; (3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点的平行四边形?若存在求点P坐标;若不存在,请说明理由.
已知点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB; (2)如图2,若点是与的交点,当时,求PC与PB的比值; (3)若∠MON=60°,OB=2,射线AP交ON于点,且满足且,请借助图3补全图形,并求的长.
已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F. (1)求证:DE是⊙O的切线; (2)若⊙O的半径为4,BE=2,求∠F的度数.
如图,在平面直角坐标系中,⊙A与y轴相切于点,与x轴相交于M、N两点.如果点M的坐标为,求⊙A的半径及点N的坐标.