在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=时,求PE及DH的长。
在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.
小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.注意:只需添加一个符合要求的正方形,并用阴影表示.
已知:,化简 再求值.
如图,A、B两地均为海上观测站,从A地发现它的西南方向上有一艘船,同时,从B地发现它在南偏东30°方向上,试在图中确定这艘船(用点M表示)的位置.
解方程(1),(2)