在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.
(柳州)如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C. (1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标; (2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标; (3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.
(柳州)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数()的图象与BC边交于点E. (1)当F为AB的中点时,求该函数的解析式; (2)当k为何值时,△EFA的面积最大,最大面积是多少?
(来宾)在矩形ABCD中,AB=a,AD=b,点M为BC边上一动点(点M与点B、C不重合),连接AM,过点M作MN⊥AM,垂足为M,MN交CD或CD的延长线于点N. (1)求证:△CMN∽△BAM; (2)设BM=x,CN=y,求y关于x的函数解析式.当x取何值时,y有最大值,并求出y的最大值; (3)当点M在BC上运动时,求使得下列两个条件都成立的b的取值范围:①点N始终在线段CD上,②点M在某一位置时,点N恰好与点D重合.
(来宾)过点(0,﹣2)的直线:()与直线:交于点P(2,m). (1)写出使得的x的取值范围; (2)求点P的坐标和直线的解析式.
(南宁)在平面直角坐标系中,已知A、B是抛物线()上两个不同的点,其中A在第二象限,B在第一象限, (1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积. (2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A.B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由. (3)在(2)的条件下,若直线分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.