已知,如图,二次函数图象的顶点为,与轴交于、两点(在点右侧),点、关于直线:对称求、两点坐标,并证明点在直线上求二次函数解析式;过点作直线∥交直线于点,、N分别为直线和直线上的两个动点,连接、、,求和的最小值.
如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线l,过点B作一直线(在山的旁边经过),与相交于D点,经测量∠ABD=135°,BD=800米,求直线上距离D点多远的C处开挖?(≈1.414,精确到1米)
已知:如图,点在同一直线上,,,∥.求证:.
如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。如果从A到B记为:A→B(+1,+3);从C到D记为:C→D(+1,-2)。其中第一个数表示左右方向,第二个数表示上下方向,那么图中 (1)A→C( , ),C→(-2, ); (2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程; (3)假如这只甲虫从A处去甲虫P处的行走路线依次为 (+2,+2),(+1,-1),(-2,+3),请在图中标出P的位置.
混合运算: (1), (2).
解方程组