如图,某水渠的横断面是以 A B 为直径的半圆 O ,其中水面截线 M N ∥ A B .嘉琪在 A 处测得垂直站立于 B 处的爸爸头顶 C 的仰角为 14 ° ,点 M 的俯角为 7 ° .已知爸爸的身高为 1 . 7 m .
(1)求 ∠ C 的大小及 A B 的长;
(2)请在图中画出线段 D H ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).
(参考数据: tan 76 ° 取 4 , 17 取 4 . 1 )
第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.
已知AB为⊙O的直径,C为⊙O上一点,AD与过C点的切线垂直,垂足为D,AD交⊙O于点E,∠CAB=30°(1)如图①,求∠DAC的大小;(2)如图②,若⊙O的半径为4,求DE的长.
如图,某河堤的横断面是梯形ABCD,BC∥AD,BE⊥AD于点E,AB=50米,BC=30米,∠A=60°,∠D=30°.求AD的长度.
已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
(1997•西宁)已知二次函数y=ax2+bx+c的图象抛物线G经过(﹣5,0),(0,),(1,6)三点,直线l的解析式为y=2x﹣3(1)求抛物线G的函数解析式;(2)求证:抛物线G与直线L无公共点;(3)若与l平行的直线y=2x+m与抛物线G只有一个公共点P,求P点的坐标.