数列的前n项和。(1)求证:数列是等比数列,并求的通项公式;(2)如果对任意恒成立,求实数k的取值范围。
(本小题满分15分)设函数与的图像分别交直线于点,且曲线在点处的切线与曲线在点处的切线平行.(1)求函数,的表达式;(2)设函数,求函数的最小值;(3)若不等式在上恒成立,求实数的取值范围.
(本小题满分14分)如图所示,平面,底面为菱形,为的中点.(1)求证:平面;(2)求证://平面; (3) 求二面角的平面角的大小.
.(本小题满分14分)已知单调递增的等比数列满足:;(1)求数列的通项公式;(2)若,数列的前n项和为,求成立的正整数 n的最小值.
(本小题满分14分)在△ABC中,分别为角A、B、C的对边,, ="3," △ABC的面积为6.⑴ 角A的正弦值; ⑵求边b、c.
设函数其中为常数.(Ⅰ)若函数有极值点,求的取值范围及的极值点;(Ⅱ)证明:对任意不小于3的正整数,不等式都成立.