(本小题满分12分)已知数列满足(t>0,n≥2),且,n≥2时,>0.其中是数列的前n项和.(Ⅰ)求数列的通项公式; (Ⅱ)若对于,不等式恒成立,求t 的取值范围.
现有A,B两个投资项目,投资两项目所获得利润分别是和(万元),它们与投入资金(万元)的关系依次是:其中与平方根成正比,且当为4(万元)时为1(万元),又与成正比,当为4(万元)时也是1(万元);某人甲有3万元资金投资.(1)分别求出,与的函数关系式;(2)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?
已知函数f(x)=(A>0,>0,)的图象的一部分如下图所示.(1)求函数f(x)的解析式.(2)当x(-6,2)时,求函数g(x)= f(x+2)的单调递增区间.
已知(1)化简;(2)若是第三象限角,且,求的值.
已知.(1)求的单调增区间;(2)求图象的对称轴的方程和对称中心的坐标;(3)在给出的直角坐标系中,请画出在区间[]上的图象.
已知集合,,(1)若,求;(2)若,求实数a的取值范围.