已知圆C: (1)若平面上有两点A(1 , 0),B(-1 , 0),点P是圆C上的动点,求使 取得最小值时点P的坐标. (2) 若是轴上的动点,分别切圆于两点①若,求直线的方程;②求证:直线恒过一定点.
设函数(),其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求函数的极大值和极小值.
已知等差数列中,. (I)求数列的通项公式; (II)若数列的前项和,求的值.
已知实数满足,,试确定的最大值.
过点,倾斜角为的直线与圆C:(为参数)相交于两点,试确定的值.
已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点变换成,求矩阵M.