样本容量为 的频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在[6,18)内的频数是40..
(文科)已知点是椭圆的左顶点,直线与椭圆相交于两点,与轴相交于点.且当时,△的面积为. (Ⅰ)求椭圆的方程; (Ⅱ)设直线,与直线分别交于,两点,试判断以为直径的圆是否经过点?并请说明理由.
(文科)已知抛物线P:x2="2py" (p>0). (Ⅰ)若抛物线上点到焦点F的距离为. (ⅰ)求抛物线的方程; (ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程; (Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.
(理科)已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3, (1)求椭圆的方程; (2)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.
(文科)已知,为椭圆的左、右顶点,为其右焦点,是椭圆上异于,的动点,且面积的最大值为. (Ⅰ)求椭圆的方程及离心率; (Ⅱ)直线与椭圆在点处的切线交于点,当直线绕点转动时,试判断以为直径的圆与直线的位置关系,并加以证明.
(理科)已知是抛物线上一点,经过点的直线与抛物线交于两点(不同于点),直线分别交直线于点. (Ⅰ)求抛物线方程及其焦点坐标; (Ⅱ)已知为原点,求证:为定值.