已知实数a,b∈{-2,-1,1,2}。(1)求直线y=ax+b不经过第四象限的概率;(2)求直线y=ax+b与圆x2+y2=1有公共点的概率。
已知函数f(x)=在x=-2处有极值. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)若函数f(x)在区间[-3,3]上有且仅有一个零点,求b的取值范围.
已知数列的前n项和为,,,等差数列中,且,又、、成等比数列. (Ⅰ)求数列、的通项公式; (Ⅱ)求数列的前n项和Tn.
设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和组成数对(,并构成函数 (Ⅰ)写出所有可能的数对(,并计算,且的概率; (Ⅱ)求函数在区间[上是增函数的概率.
如图,在四棱锥中,底面是菱形,,为的中点,为的中点. (Ⅰ)证明:平面平面; (Ⅱ)证明:直线.
已知函数f(x)=(其中A>0,)的图象如图所示。 (Ⅰ)求A,w及j的值; (Ⅱ)若tana=2,求的值。