已知函数.(I)当时,求的单调区间(Ⅱ)若不等式有解,求实数m的取值菹围;(Ⅲ)定义:对于函数和在其公共定义域内的任意实数,称的值为两函数在处的差值。证明:当时,函数和在其公共定义域内的所有差值都大干2。
已知⊙,直线 (1)求证:对,直线与⊙总有两个不同的交点. (2)求弦长的取值范围. (3)求弦长为整数的弦共有几条.
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点是的中点。 (I)求证:; (II)求证://平面.
已知命题:实数满足,命题:实数满足方程表示焦点在轴上的椭圆,且非是非的充分不必要条件,求的取值范围。
已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y=t与 椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P。 (Ⅰ)求椭圆C的方程; (Ⅱ)若圆P与x轴相切,求圆心P的坐标; (Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。
设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列. (Ⅰ)证明:为等比数列; (Ⅱ)设,求数列的前项和.