甲乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中三人答对的概率分别为,且各人回答得正确与否相互之间没有影响.(1)若用表示甲队的总得分,求随机变量分布列和数学期望;(2)用表示事件“甲、乙两队总得分之和为”,用表示事件“甲队总得分大于乙队总得分”,求.
如图,D,E分别为三棱锥P—ABC的棱AP、AB上的点,且AD:DP=AE:EB=1:3.求证:DE//平面PBC
(本小题满分14分)有人玩掷正四面体骰子走跳棋的游戏,已知正四面体骰子四个面上分别印有,棋盘上标有第0站、第1站、第2站、…、第100站.一枚棋子开始在第0站,棋手每掷一次骰子,若掷出后骰子为面,棋子向前跳2站,若掷出后骰子为中的一面,则棋子向前跳1站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为(). (Ⅰ)求; (Ⅱ)求证:; (Ⅲ)求玩该游戏获胜的概率.
(此题8、9、10班做)(本小题满分13分) 设数列的前项和为,对一切,点都在函数的图象上. (Ⅰ)求及数列的通项公式; (Ⅱ) 将数列依次按1项、2项、3项、4项循环地分为(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值; (Ⅲ)令(),求证:.
(此题平行班做)(本小题满分12分) 某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示: (Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是,请完成上面的列联表;
(Ⅱ)在(1)的条件下,试运用独立性检验的思想方法分析:在犯错误概率不超过0.1%的情况下判断学生的学习积极性与对待班级工作的态度是否有关?并说明理由.
(本小题满分13分) 袋中有大小相同的三个球,编号分别为1、2和3,从袋中每次取出一个球,若取到的球的编号为偶数,则把该球编号加1(如:取到球的编号为2,改为3)后放回袋中继续取球;若取到球的编号为奇数,则取球停止,用表示所有被取球的编号之和. (Ⅰ)求的概率分布; (Ⅱ)求的数学期望与方差.