(1)当时,求的值; (2)求在上的值域.
(本小题满分10分)选修4-1:几何证明选讲如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:(Ⅰ);(Ⅱ).
已知函数在点处的切线方程为(Ⅰ)求的表达式;(Ⅱ)若满足恒成立,则称的一个“上界函数”,如果函数为(为实数)的一个“上界函数”,求的取值范围;(Ⅲ)当时,讨论在区间(0,2)上极值点的个数.
已知椭圆方程为,P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.(Ⅰ)求M点的轨迹T的方程;(Ⅱ)已知、,试探究是否存在这样的点:是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.
某次月考数学第Ⅰ卷共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:(Ⅰ)得40分的概率; (Ⅱ)得多少分的可能性最大?(Ⅲ)所得分数的数学期望.
如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD, E、F分别为棱BC、AD的中点. (Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值. (Ⅱ)若二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.