已知焦点在轴上椭圆的长轴的端点分别为,为椭圆的中心,为右焦点,且,离心率。(Ⅰ)求椭圆的标准方程;(Ⅱ)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰好为的垂心?若存在,求出直线的方程,若不存在,请说明理由。
在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.(1)判断两圆的位置关系;(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C截得的弦长是6.
已知点和求过点且与的距离相等的直线方程.
已知函数,其中.(1)若对一切x∈R,≥1恒成立,求a的取值集合;(2)在函数的图像上取定两点,,记直线AB的斜率 为k,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.
已知函数,将其图象向左移个单位,并向上移个单位,得到函数的图象.(1)求实数的值;(2)设函数,求函数的单调递增区间和最值.
已知函数:(1)若函数在区间上存在零点,求实数的取值范围;(2)问:是否存在常数,当时,的值域为区间,且的长度为.