已知函数,设(Ⅰ)求的单调区间;(Ⅱ)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值;(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。
已知以点C (t, )(t∈R),t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为坐标原点. (1)求证:△OAB的面积为定值; (2)设直线y= –2x+4与圆C交于点M,N若|OM|=|ON|,求圆C的方程. (3)若t>0,当圆C的半径最小时,圆C上至少有三个不同的点到直线l:y –的距离为,求直线l的斜率k的取值范围.
如图:某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记. (1)试将污水净化管道的长度表示为的函数,并写出定 义域; (2)若,求此时管道的长度; (3)问:当取何值时,污水净化效果最好?并求出此时 管道的长度.
如右图,已知ABCD为正方形,,,. (1)求证:平面平面; (2)求点A到平面BEF的距离;
以下茎叶图记录了甲、乙两组各四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。 (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差; (Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。 (其中为,,…… 的平均数)
若关于的实系数方程有两个根,一个根在区间内,另一根在区间内,记点对应的区域为. (1)设,求的取值范围; (2)过点的一束光线,射到轴被反射后经过区域,求反射光线所在直线经过区域内的整点(即横纵坐标为整数的点)时直线的方程.