如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′,并写出A′、B′、C′的坐标。
“五·一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票,下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有l,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”方法分析.这个规则对双方是否公平?
如图(1),Rt ∆ABC中,垂足为D.AF平分∠CAB.交CD于点E,交CB于点F.求证:CE=CF;将图(1)中的∆ADE沿AB向右平移到∆A'D'E'的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE’与CF有怎样的数量关系?请证明你的结论.
综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠α=720.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字)’ (参考数据:sin360≈0.59, cos360≈0.81, tan360≈0.73, sin720≈0.95, cos720≈0.31,tan720≈3.08)
在某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成乙队单独完成这项工程需要多少天甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
先化简,再求代数式的值:其中a= tan600 - 2sin300.