如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ。求∠PCQ的度数;当AB=4,AP∶PC=1∶3时,求PQ的大小;当点P在线段AC上运动时(P不与A、C重合),请写出一个反映PA,PC,PB之间关系的等式,并加以证明。
如图,直线y=3x和y=2x分别与直线x=2相交于点A、B,将抛物线y=x2沿线段OB移动,使其顶点始终在线段OB上,抛物线与直线x=2相交于点C,设△AOC的面积为S,求S的取值范围.
如图,直角△ABC中,∠C=90°,AB=2,sinB=,点P为边BC上一动点,PD∥AB,PD交AC于点D,连结AP.(1)求、的长;(2)设的长为,的面积为.当为何值时,最大并求出最大值.
已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,求:(1)线段DC的长;(2)tan∠EDC的值.
已知二次函数y=-x2-x.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.
已知抛物线y=x2-2kx+3k+4.(1)顶点在y轴上时,k的值为_________.(2)顶点在x轴上时,k的值为_________.(3)抛物线经过原点时,k的值为_______.