用秦九韶算法求多项当时的值。
(本小题满分12分)已知双曲线,若双曲线的渐近线过点,且双曲线过点(1) 求双曲线的方程;(2)若双曲线的左、右顶点分别为,点在上且直线的斜率的取值范围是,求直线斜率的取值范围.
(本小题满分10分)(1) 设函数,其中θ∈,求导数的取值范围;(2)若曲线与曲线在它们的公共点处具有公共切线,求公共切线的方程.
(本小题满分10分)设命题p:函数的定义域为R,命题q:双曲线的离心率,(1)如果p是真命题,求实数的取值范围;(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围.
(本小题满分12分)已知椭圆C的方程为,定点N(0,1),过圆M:上任意一点作圆M的一条切线交椭圆于、两点. (1)求证:; (2)求的取值范围; (3)若点P、Q在椭圆C上,直线PQ与x轴平行,直线PN交椭圆于另一个不同的点S,问:直线QS是否经过一个定点?若是,求出这个定点的坐标;若不是,说明理由.
(本小题满分12分)已知动圆过定点(0,1),且与轴相切,点关于圆心的对称点为,动点的轨迹为.(1)求曲线的方程;(2)设是曲线上的一个定点,过点作两条倾斜角互补的直线,分别与曲线相交于另外两点、.证明直线的斜率为定值,并求出这个定值.