(本小题满分13分)已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针方向旋转角得到点。(1)已知平面内点,点。把点绕点沿逆时针旋转后得到点,求点的坐标;(2)设平面内直线上的每一点绕坐标原点沿逆时针方向旋转后得到的点组成的直线方程是,求原来的直线方程。
已知函数为自然对数的底数). (1)求曲线在处的切线方程; (2)若是的一个极值点,且点,满足条件:. (ⅰ)求的值; (ⅱ)求证:点,,是三个不同的点,且构成直角三角形.
设向量,定义一种向量积. 已知向量,,点为的图象上的动点,点 为的图象上的动点,且满足(其中为坐标原点). (1)请用表示; (2)求的表达式并求它的周期; (3)把函数图象上各点的横坐标缩小为原来的倍(纵坐标不变),得到函数的图象.设函数,试讨论函数在区间内的零点个数.
(已知抛物线()的准线与轴交于点. (1)求抛物线的方程,并写出焦点坐标; (2)是否存在过焦点的直线(直线与抛物线交于点,),使得三角形的面积?若存在,请求出直线的方程;若不存在,请说明理由.
如图,在三棱锥中,平面平面,于点,且,, (1)求证: (2) (3)若,,求三棱锥的体积.
将数列按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一 个数构成公差为的等差数列;②从第二行起,每行各数按从左到右的顺序都构成公比为的等比数列.若,,. (1)求的值; (2)求第行各数的和.