(本小题满分13分)已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针方向旋转角得到点。(1)已知平面内点,点。把点绕点沿逆时针旋转后得到点,求点的坐标;(2)设平面内直线上的每一点绕坐标原点沿逆时针方向旋转后得到的点组成的直线方程是,求原来的直线方程。
已知等差数列的前项和为,且. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,求数列的前项和.
椭圆的离心率是,它被直线截得的弦长是,求椭圆的方程.
已知命题p:方程有两个不相等的实根;Q:不等式的解集为R;若p或Q为真,p且Q为假,求实数M的取值范围.
如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面切于点. (1)求证:PD⊥平面; (2)求直线与平面所成的角的正弦值; (3)求点到平面的距离.
如图,在正四面体中,分别是棱的中点. (1)求证:四边形是平行四边形; (2)求证:平面; (3)求证:平面.