某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如右图).记成绩不低于90分者为“成绩优秀”.(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为,求的分布列和数学期望; (II)根据频率分布直方图填写下面列联表,并判断是否有95%的把握认为“成绩优秀”与教学方式有关。
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则如图所示,例如,明文1,2,3,4对应密文5,7,18,16. 当接收方收到密文14,9,23,28时,则解密得到的明文为.
为了保证信息安全传输,设计一种密码系统,其加密、解密原理如下图: 现在加密方式为:把发送的数字信息X,写为“a11a21a12a22”的形式,先左乘矩阵A=,再左乘矩阵B=,得到密文Y,现在已知接收方得到的密文4,12,36,72,试破解该密码.
证明:对任给的奇素数p,总存在无穷多个正整数n使得p|(n2n﹣1).
已知简单多面体的顶点数、面数、棱数分别为V、F、E,多面体的各面为正x边形,过同一顶点的面数为y.求证:+﹣=.
下面(a)(b)(c)(d)为四个平面图: (1)数出每个平面图的顶点数、边数、区域数(不包括图形外面的无限区域),并将相应结果填入表:
(2)观察表,若记一个平面图的顶点数、边数、区域数分别为E、F、G,试推断E、F、G之间的等量关系; (3)现已知某个平面图有2009个顶点,且围成2009个区域,试根据以上关系确定该平面图的边数.