数列的首项,且记(1)求,;(2)判断数列是否为等比数列,并证明你的结论.(3)求的通项公式.
等边三角形的边长为3,点、分别是边、上的点,且满足(如图1).将△沿折起到△的位置,使二面角成直二面角,连结、 (如图2).(1)求证:平面;(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.
已知正方形的边长为2,分别是边的中点.(1)在正方形内部随机取一点,求满足的概率;(2)从这八个点中,随机选取两个点,记这两个点之间的距离为,求随机变量的分布列与数学期望.
某单位有、、三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为,,.假定、、、四点在同一平面内. (1)求的大小; (2)求点到直线的距离.
已知函数,,其中为常数, ,函数的图象与坐标轴交点处的切线为,函数的图象与直线交点处的切线为,且。(Ⅰ)若对任意的,不等式成立,求实数的取值范围.(Ⅱ)对于函数和公共定义域内的任意实数。我们把 的值称为两函数在处的偏差。求证:函数和在其公共定义域的所有偏差都大于2.
已知椭圆的离心率为,,为椭圆的两个焦点,点在椭圆上,且的周长为。(Ⅰ)求椭圆的方程(Ⅱ)设直线与椭圆相交于、两点,若(为坐标原点),求证:直线与圆相切.