(本小题满分14分)设,函数.(1) 若,求曲线在处的切线方程;(2) 若无零点,求实数的取值范围;(3) 若有两个相异零点,求证: .
如图,在以点为圆心,为直径的半圆中,,是半圆弧上一点,,曲线是满足为定值的动点的轨迹,且曲线过点. (Ⅰ)建立适当的平面直角坐标系,求曲线的方程; (Ⅱ)设过点的直线l与曲线相交于不同的两点、 若△的面积不小于,求直线斜率的取值范围.
已知数列和满足:,其中为实数,为正整数. (Ⅰ)对任意实数,证明数列不是等比数列; (Ⅱ)试判断数列是否为等比数列,并证明你的结论; (Ⅲ)设,为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.
在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.(Ⅰ)写出C的方程;(Ⅱ)若,求k的值; (Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||.
、已知是函数的一个极值点. (Ⅰ)求;(Ⅱ)求函数的单调区间; (Ⅲ)若直线与函数的图象有3个交点,求的取值范围.
已知函数(x≥4)的反函数为,数列满足:a1=1,,(N*),数列,,,…,是首项为1,公比为的等比数列. (Ⅰ)求证:数列为等差数列;(Ⅱ)若,求数列的前n项和.