如图,已知四边形与均为正方形,平面平面.(1)求证:平面;(2)求二面角的大小.
(本小题满分12分)已知直线,(1)若直线过点(3,2)且,求直线的方程;(2)若直线过与直线的交点,且,求直线的方程.
(本小题满分10分)如图甲,⊙的直径,圆上两点在直径的两侧,使, .沿直径折起,使两个半圆所在的平面互相垂直(如图乙),为的中点.根据图乙解答下列各题:(1)求点到的距离;(2)在弧上是否存在一点,使得∥平面?若存在,试确定点的位置;若不存在,请说明理由.
(本小题满分12分)如图,圆:.(Ⅰ)若圆与轴相切,求圆的方程;(Ⅱ)已知,圆与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
(本小题满分12分)如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=PC=2.E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)求二面角P—AC—E的余弦值;(3)求直线PA与平面EAC所成角的正弦值.
(本小题满分12分)已知关于x,y的方程C: . (1)当m为何值时,方程C表示圆. (2)若圆C与直线l: x+2y-4=0相交于M,N两点,且MN=,求m的值.