设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;(3)当,,方程有唯一实数解,求正数的值.
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.
在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B.(1)求圆Q的面积;(2)求k的取值范围;(3)是否存在常数k,使得向量+与共线?如果存在,求k的值;如果不存在,请说明理由.
已知椭圆C:=1(a>b>0)的离心率为,一条准线l:x=2.(1)求椭圆C的方程;(2)设O为坐标原点,M是l上的点,F为椭圆C的右焦点,过点F作OM的垂线与以OM为直径的圆D交于P,Q两点.①若PQ=,求圆D的方程;②若M是l上的动点,求证点P在定圆上,并求该定圆的方程.
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.
已知数列{an}满足a1=a(a>0,a∈N*),a1+a2+…+an-pan+1=0(p≠0,p≠-1,n∈N*).(1)求数列{an}的通项公式an;(2)若对每一个正整数k,若将ak+1,ak+2,ak+3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为dk.①求p的值及对应的数列{dk}.②记Sk为数列{dk}的前k项和,问是否存在a,使得Sk<30对任意正整数k恒成立?若存在,求出a的最大值;若不存在,请说明理由.